
www.manaraa.com

Storage Estimation for Multidimensional Aggregates inthe Presence of Hierarchies�Amit Shukla Prasad M. DeshpandeJe�rey F. Naughton Karthikeyan Ramasamyfamit,pmd,naughton,karthikg@cs.wisc.eduComputer Sciences DepartmentUniversity of Wisconsin - Madison
AbstractTo speed up multidimensional data analysis,database systems frequently precompute ag-gregates on some subsets of dimensions andtheir corresponding hierarchies. This improvesquery response time. However, the decision ofwhat and how much to precompute is a di�-cult one. It is further complicated by the factthat precomputation in the presence of hier-archies can result in an unintuitively large in-crease in the amount of storage required by thedatabase. Hence, it is interesting and usefulto estimate the storage blowup that will re-sult from a proposed set of precomputationswithout actually computing them. We proposethree strategies for this problem: one based onsampling, one based on mathematical approx-imation, and one based on probabilistic count-ing. We investigate the accuracy of these al-gorithms in estimating the blowup for di�erentdata distributions and database schemas. Thealgorithm based upon probabilistic counting isparticularly attractive, since it estimates thestorage blowup to within provable error boundswhile performing only a single scan of the data.�Work supported by an IBM CAS Fellowship, NSF grant IRI-9157357, and a grant from IBM under the University PartnershipProgram.Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 22nd VLDB ConferenceMumbai (Bombay), India, 1996

1 IntroductionMultidimensional data analysis, as supported by OLAPsystems, requires the computation of several large ag-gregate functions over large amounts of data. To meetthe performance demands imposed by these applica-tions, virtually all OLAP products resort to some de-gree of precomputation of these aggregates. The morethat is precomputed, the faster queries can be an-swered; however, it is often di�cult to say a priori howmuch storage a given amount of precomputation willrequire. This leaves the database administrator with adi�cult problem: how does one predict the amount ofstorage a speci�ed set of precomputations will requirewithout actually performing the precomputation? Inthis paper we propose and evaluate a number of tech-niques for answering this question.To further clarify the problem we are considering, webegin with an example1. Consider a table of sales withthe schemaSales(ProductId, StoreId, Quantity)with the intuitive meaning that each tuple representssome quantity of some product sold in some store. Fur-thermore, assume that we have some information aboutproducts captured in a tableProducts(ProductId, Type, Category)capturing for each product to which Type it belongs,and for each Type to which Category it belongs. Fi-nally, suppose we have an additional tableStores(StoreId, Region)which captures for each store to which region it belongs.This data set can be viewed conceptually as a two-dimensional array with hierarchies on the dimensions,as shown in Figure 1 (a).1This example �rst appeared in [AGS95]



www.manaraa.com

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

P1

P2

P3

P4

P5

P6

P7

P8

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

California Wisconsin

Category Type

Soap

Shampoo

Personal

Hygiene

Stores

Region

Product(a)
Personal

Hygiene

Region

S1 S2 S3 S4 S5

x

S6 S7 S8 S9 S10

P1

P2

P3

P4

P5

P6

P7

P8

x

x

California Wisconsin

Category Type

Soap

Shampoo

Stores

Product

x

x

x

x

x

x

x

x x

x x

x

(b) Database DB 1
S1 S2 S3 S4 S5 S6 S7 S8

Hygiene

S9 S10

P1

P2

P3

P4

P5

P6

P7

P8

x

California Wisconsin

Category Type

Soap

Shampoo

Stores

Product

x

x

xx

x

x

x

x

x

x

x

xx

x

Region

Personal

(c) Database DB 2Figure 1: Three sample multi-dimensional data sets.Si's represent Stores and Pi's represent Products.Stores S1 - S5 are in California, and so roll up intothe region California, while S6 - S10 are in Wisconsin,and roll up into the region Wisconsin. Products P1 -P3 are of type Soap, while products P4 - P8 are of typeShampoo. Soap and Shampoo are further grouped intothe category Personal Hygiene. The x's are sales vol-umes; entries that are blank correspond to (product,store) combinations for which there are no sales. (b)and (c) are sample multi-dimensional data sets whichare used in an example.

There are a number of queries that can be asked ofthis data. For example, one may wish to know salesby product; or sales by type; or sales by product andregion; or sales by store and type; and so forth. Eachof these queries represents an aggregate computation.For example, sales by product in SQL is just:select ProductId, SUM(Quantity)from salesgroup by ProductId;If the sales table is large, this query will be slow. How-ever, if this aggregate is precomputed, the query (andqueries derived from it) can be answered almost in-stantly. Therefore, the task the DBA faces is to choosea set of queries to precompute and store. In this paper,we �rst consider the problem of estimating how muchstorage will be required if all possible combinations ofdimensions and their hierarchies are precomputed. Fur-thermore, once we have described how to estimate thisfull precomputation the extension to precomputation ofa subset is trivial.A useful way to describe the full precomputationproblem is to use the framework proposed by Gray etal. [GBLP96]: the cube operator. The cube operatoris the n-dimensional generalization of the SQL groupby operator. The cube on n attributes computes thegroup by aggregates for each possible subset of thesedimensions. In our example, this is: (), (ProductId),(StoreId), (ProductId, StoreId). The SQL for thesefour group bys (in the above order) is:select SUM(Quantity)from sales;select ProductId, SUM(Quantity)from salesgroup by ProductId;select StoreId, SUM(Quantity)from salesgroup by StoreId;select ProductId, StoreId, SUM(Quantity)from salesgroup by ProductId, StoreId;When we consider the possibility of aggregatingover hierarchies, we get a generalization of the cube,which we will refer to as the cube from here on. Thecube as de�ned by [GBLP96], will be referred to asa cube without hierarchies. Again returning to ourexample, the cube with hierarchies will compute ag-gregates for (), (ProductId), (StoreId), (Type), (Cat-egory), (Region), (ProductId, StoreId), (ProductId,Region), (Type, StoreId), (Type, Region), (Category,



www.manaraa.com

Table 1: The variation in the size of the cube with thedata distribution. Figures 1 (b) and (c) show DB 1 andDB 2 respectively.Group by DB 1 DB 2() 1 1(Products) 3 8(Type) 1 2(Category) 1 1(Stores) 5 10(Regions) 1 2(Products, Stores) 15 15(Type, Stores) 5 15(Category, Stores) 5 10(Product, Region) 3 14(Type, Region) 1 4(Category, Region) 1 2Size of Cube 42 84StoreId), and �nally (Category, Region). It is the pres-ence of hierarchies in the dimensions that in generalmake the storage requirements of cubes with hierar-chies far worse than that of cubes without hierarchies.Note that on this small example of only two dimensionsthe cube computed on the 16 tuples in Figure 1 (a) re-sults in 73 tuples, while the cube without hierarchieshas 34 tuples.Furthermore, for a given database schema and a�xed number of data elements, the resulting size blowupon computing a cube can vary dramatically. Figure 1(b) and (c) show two databases which illustrate therange of blowups that can occur. Each database hasthe same number of tuples (15), the same number ofdimensions (2), and the same hierarchy on the dimen-sions. As the computation in Table 1 shows, even for asmall database, and a small number of dimensions, thesizes of the cubes for the databases are very di�erent.Estimating the size of these blowups without com-puting the cube is the problem we are attacking in thispaper. Computing the cube is a very expensive oper-ation. For example, computing the cube for a schemaof 5 dimensions each with two levels of hierarchies isequivalent to computing over 200 distinct SQL \groupby" queries. One of the algorithms we propose, the onebased on probabilistic counting, is especially attractivein that it estimates the cube size to within a provable er-ror bound while only scanning the input data set once.The remainder of this paper is organized as follows.Section 2 discusses solutions to this problem. An eval-uation of how well our algorithms work in practice ispresented in section 3. Section 4 discusses extensions ofthe algorithm based on probabilistic counting. Finally,section 5 concludes and discusses future work.

2 Approximating the size of the CubeThis section presents three solutions that approximatethe size of the cube.2.1 An Analytical AlgorithmIf the data is assumed to be uniformly distributed, wecan mathematically approximate the number of tuplesthat will appear in the result of the cube computationusing the following standard result. Feller [Fel57]:If r elements are chosen uniformly and atrandom from a set of n elements, the ex-pected number of distinct elements obtainedis n� n(1� 1=n)r.This can be used to quickly �nd the upper bound onthe size of the cube as follows.To apply the uniform-assumption method, we needto know the number of distinct values for each attributeof the relation. Such statistics are typically maintainedin the system catalog. Using the above result, we canestimate the size of a group by on any subset of at-tributes. For example, consider a relation R havingattributes A, B, C, D. Suppose we want to estimatethe size of the group by on attributes A and B. If thenumber of distinct values of A is n1 and that of B isn2, then the number of elements in A � B is n1 � n2.Thus n = n1 � n2 in the above formula. Let r be thenumber of tuples in the relation. Using these values wecan estimate the size of the group by. This is similar towhat is done in relational group by estimation.A cube is a collection of group bys on di�erent sub-sets of attributes. If we are computing a cube on kdimensions where dimension i has a hierarchy of size hithen the total number of group bys to be computed is:kYi=1(hi + 1) (1)This �gure is obtained by observing that in any groupby at most one of the attributes in each hierarchy shouldbe present. We can estimate the size of each of thegroup bys and add them up to give the estimated sizeof the cube.Any skew in the data tends to reduce the size of thegroup bys reducing the size of the cube. Hence the uni-form assumption tends to overestimate the size of thecube, and there is of course no way to know how faro� it might be, since this method does not consult thedatabase other than to gather crude cardinalities. Italso requires counts of distinct values, without which itcannot be used. However, this method has the advan-tage that it is simple and fast.



www.manaraa.com

2.2 A Sampling - Based AlgorithmIn this section, we consider a simple sampling-basedalgorithm. The basic idea is as follows: take a randomsubset of the database, and compute the cube on thatsubset. Then scale up this estimate by the ratio of thedata size to the sample size. To be more precise, wehave the following. Let D and s be the database anda sample obtained from the database respectively. Ifjsj is the sample size, jDj the size of the database, andCUBE(s) is the size of the cube computed on the samples, then the size of the cube on the entire database D isapproximated by: CUBE(s) � jDjjsjThis is admittedly very crude. The approach of esti-mating the size of an operation by computing the oper-ation on a subset of the data and then linearly scalingproduces an unbiased estimator for some common re-lational algebraic operations such as join and select.Unfortunately, in this case, the estimate produced isbiased, as estimating the size of the cube is more akinto estimating the size of a projection than it is to es-timating the size of a join. However, once again thecomputation is simple, and has the potential advantageover the uniform assumption estimate of examining astatistical subset of the database (instead of just usingcardinalities.) As we will see in Section 3, on many datasets, this simple biased estimator produces surprisinglygood estimates.2.3 An Algorithm Based on ProbabilisticCountingThe key idea of the solution we propose in this section isbased on an interesting observation made from Figure 1(a). To compute the number of tuples formed by group-ing Product type by Stores, we essentially group tu-ples along the Product dimension (to generate Producttype), and count the number of distinct stores which aregenerated by this operation (See Figure 2). Hence, byestimating the number of distinct elements in a particu-lar grouping of the data, we can estimate the number oftuples in that grouping. We use this idea to constructan algorithm that estimates the size of the cube basedon the following probabilistic algorithm which countsthe number of distinct elements in a multi-set.2.3.1 The Probabilistic Counting AlgorithmFlajolet and Martin [FM85] propose a probabilistic al-gorithm that counts the number of distinct elements ina multi-set. It makes the estimate after a single passthrough the database, and using only a �xed amountof additional storage. We present a description of theiralgorithm below.

For a non-negative integer y with L bits, bit(y; k) isde�ned to be the kth bit in the binary representationof y, such that y =Pk�0 bit(y; k)2k: The function �(y)represents the position of the least signi�cant 1-bit inthe binary representation of y.�(y) = mink�0 bit(y; k) 6= 0 if y > 0= L if y = 0hash is a hashing function that transforms records intointegers uniformly distributed over the set of binarystrings of length L. That is, the range of hash is0 : : : 2L � 1. BITMAP[0 : : : L� 1] is a bit vector. If Mis the multi-set whose cardinality is sought, the basicalgorithm comprises of the following sequence of oper-ations:for i := 0 to L� 1 do BITMAP[i] := 0;for all x in M dobegin index := �(hash(x));if BITMAP[index] = 0 thenBITMAP[index] := 1;endIf the values returned by hash(x) are uniformly dis-tributed, the pattern 0k1 appears with probability2�(k+1). The algorithm hinges on recording the occur-rence of such patterns in the vector BITMAP[0: : : L�1].Therefore, BITMAP[i] = 1 i� after execution, a patternof the form 0i1 has appeared among the hashed val-ues of the data records. If n is the number of distinctelements, BITMAP[0] is accessed approximately n=2times, BITMAP[1] approximately n=4 times, : : : Thus,at the end of an execution, BITMAP[i] will almost cer-tainly be zero if i � log2 n and one if i � log2 n. Theestimate formed from the above will typically within afactor of 2 from the actual size.The simplest way to improve the accuracy of the es-timate is to use a set H of m hashing functions, andcomputing m di�erent BITMAP vectors. If R repre-sents the position of the leftmost zero in the BITMAP,using m hashing functions we can obtain m estimatesR<1>; R<2>; : : : ; R<m>, where R<i> is obtained fromhashing function i. We consider the averageA = R<1> +R<2> + : : :+R<m>m (2)When n distinct elements are present in a �le, the ran-dom variable A has an expectation that satis�esE(A) � log2 'n; ' = 0:77351Thus, 2A can be expected to provide an estimate ofn. The same e�ect can be achieved using stochastic



www.manaraa.com

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

P1

P2

P3

P4

P5

P6

P7

P8

Soap

Shampoo

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

x xxSoap

Shampoo x x x x x x

xx x x x

(a) (b)Figure 2: Grouping Stores by Product Type. (a) Before grouping, (b) after grouping.Table 2: Parameters to the Probabilistic Counting Al-gorithm Parameter ValueNum. of Bitmaps 61' 0.77351Len. of each bitmap 32averaging. The idea is to use the hashing function todistribute each record into one of m lots, computing� = h(x) mod m (3)Only the corresponding BITMAP vector at address �is updated with the rest of the information containedin h(x). At the end, we determine the R<j>'s andcompute their average A as before. Hoping for the dis-tribution of records into lots to be even enough, we maythus expect that about n=m elements fall into each lotso that (1=')2A should be a reasonable estimate forn=m. Therefore, the estimate for n, the number of dis-tinct values, is: n = m' 2A (4)With the number of BITMAPs, m = 64, the standarderror is about 10%, and with m = 256, the error de-creases to about 5%. The parameters we used are sum-marized in Table 2.2.3.2 Approximating the Size of the CubeThe following algorithm uses probabilistic counting toestimate the number of tuples resulting from computingthe cube on the base data.(0) Initialize the bitmaps to 0.

(1) for each tuple T in the database do(2) for each combination C of hierarchies do(3) T 0 := PC(T )(4) bitset(C, �(T 0), bit(T 0))(5) count := 0(6) for each combination C of hierarchies do(7) Add the estimate from C to count.The function PC takes a tuple and projects it on thecombination of hierarchies C. �(T ) is de�ned in equa-tion 3, and bit(T) returns an integer representing thebit in the bitmap to be set. The bitmap updatestrategy is discussed in section 2.3.1. The functionbitset(C, BM, b) sets the bth bit in the BM th bitmapfor the combination of hierarchies C.Example: To illustrate the working of the algorithm,consider a tuple (P1, S7, 10000) in the sample databaseshown in Figure 1 (a). This represents sales of 10,000units of product P1 at store S7. From Figure 1 (a),product P1 is a Soap, and store S7 is in the region\Wisconsin". The combinations of hierarchies C, andthe corresponding tuple generated are shown in Table 3.The bitmap associated with each of these combinationsis updated in step (4) of the algorithm.The estimate of the number of distinct elements isgiven by equation 4. We now prove that if the boundon the error for a particular combination of dimensionsis � k, then the error of the sum of two di�erent com-binations of hierarchies is also � k.Lemma 1 The error in the sum of two estimates is �the error in a single estimate.Proof. Suppose that the two estimates have errors � k.Suppose estimate 1 and estimate 2 respectively have er-rors r1 and r2, they predict that the number of distinctvalues are E1 and E2, and the actual number of distinct



www.manaraa.com

Table 3: The combinations of hierarchies for a tuple.Since Quantity is the data being aggregated upon, itis always projected out.Group by Projected tuple() ()(Products) (P1)(Type) (Soap)(Category) (Personal Hygiene)(Stores) (S7)(Regions) (Wisconsin)(Products, Stores) (P1, S7)(Type, Stores) (Soap, S7)(Category, Stores) (Personal Hygiene, S7)(Product, Region) (P1, Wisconsin)(Type, Region) (Soap, Wisconsin)(Category, Region) (Personal Hygiene, Wisconsin)elements are respectively N1 and N2.r1 = E1 �N1N1 ; r2 = E2 �N2N2 (5)The error in the combination of the two estimates is:(E1 +E2)� (N1 +N2)N1 +N2This can be rewritten as:(E1 �N1) + (E2 �N2)N1 +N2From Equation 5, N1r1 +N2r2N1 +N2 (6)Since r1 � k; r2 � k, Equation 6 is:� k(N1 +N2)N1 +N2which is � k. Hence we have proved that the errorin the sum is bounded by the same constant k as theerrors in the component estimates.Note that this algorithm, unlike the uniform es-timate blowup and the simple sampling-based esti-mate, actually guarantees an error bound on its esti-mate. This comes at the cost of a complete scan ofthe base data table; however, even this scan is muchcheaper than actually computing the cube, which ingeneral requires multiple scans and sorts of the inputtable [AAD+96].

Table 4: The number of distinct elements in each ofthe dimensions. The total number of tuples in the basedata = 60,000 [Schema 1]Dimension num. Dimension Hierarchy1 20 1000 200 501 10,000 500 {
Table 5: The number of distinct elements in each ofthe dimensions. The total number of tuples in the basedata = 50,000 [Schema 2]Dimension num. Dimension Hierarchy1 20 1000 20 {1 100 4 {2 2000 50 {3 10,000 500 104 750 250 253 Evaluating the Accuracy of the Esti-matesIn this section we compare the accuracy of the threeapproaches by comparing their estimates of the size ofthe cube with its actual size. Tables 4 and 5 contain theschemas and the number of distinct values of the dimen-sions and hierarchies of the two databases we used. Forexample, the data in Table 4 means that the databasehas two dimensions. Dimension 0 has a two level hierar-chy, and dimension 1 has a one level hierarchy. Dimen-sion 0 has 1000 distinct values, and its hierarchies have200 and 50 values respectively, while dimension 1 has10,000 distinct values, and its hierarchy has 500 values.The database is a combination of distinct values of alldimensions. A Zip�an distribution [Zipf49] was used togenerate the database from the distinct values of eachdimension. A Zipf value of 0 means that the data isuniformly distributed. By increasing Zipf, we increasethe skew in the distribution of distinct values in thedatabase. The mapping from the distinct values in adimension to its hierarchies uses a uniform distribution.Figure 3 shows for varying degrees of skew, the ac-tual size of the cube, and estimates made by the prob-abilistic counting algorithm, by an analytical estimateusing an uniform approximation, and by the samplingalgorithm with three sample sizes (100, 500 and 1000samples). Figure 4 provides a di�erent perspective of



www.manaraa.com

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 tu

pl
es

 in
 th

e 
C

ub
e

Zipf (0 => uniform, 1 => skewed)

Actual size vs Estimated size

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

10
0 

* 
| E

st
im

at
e 

- 
A

ct
ua

l |
 / 

A
ct

ua
l s

iz
e

Zipf (0 => uniform, 1 => skewed)

Absolute Relative Error

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

Figure 3: Estimates vs. the actual size of the cubefor Schema 1. Figure 4: The error in the estimates from the actualsize of the cube for Schema 1.

1.4e+07

1.5e+07

1.6e+07

1.7e+07

1.8e+07

1.9e+07

2e+07

2.1e+07

2.2e+07

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 tu

pl
es

 in
 th

e 
C

ub
e

Zipf (0 => uniform, 1 => skewed)

Actual size vs Estimated size

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

10
0 

* 
| E

st
im

at
e 

- 
A

ct
ua

l |
 / 

A
ct

ua
l s

iz
e

Zipf (0 => uniform, 1 => skewed)

Absolute Relative Error

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

Figure 5: Estimates vs. the actual size of the cubefor Schema 2. Figure 6: The error in the estimates from the actualsize of the cube for Schema 2.



www.manaraa.com

the data. For each degree of skew, we scale the actualsize of the cube to 100, and then scale the other valuesrelative to the actual cube size. Figures 5 and 6 presentthe same information for database schema 2.The analytical algorithm based on the assumptionthat the data is uniformly distributed, provides an es-timate that is very close to the actual size when thedata is indeed uniformly distributed. However, whenthe skew in the data distribution increases, the size ofthe cube decreases. Since the estimate by the analyt-ical algorithm is independent of the underlying datadistribution, its prediction becomes more and more in-accurate. Hence, it tends to over-estimate the size ofthe cube.The algorithm based on sampling picks tuples ran-domly from the database. It over-estimates the size ofeach group since it doesn't see enough duplicates. How-ever, we expected it to do much worse, since applyingthe same algorithm to a single dimensional cube witha single level hierarchy is just estimating the size of aprojection. This sampling algorithm is known to per-form very poorly in general in that case. The reasonthe algorithm fails for projection estimation in generalis that it is highly unlikely to see enough duplicates foran accurate estimate. Suppose, for example, we have atable of 1,000,000 tuples, with 500,000 distinct values.Then any reasonable sample size will be unlikely to seeany duplicates, hence it will generate an estimate closerto 1,000,000 distinct values rather than 500,000. How-ever, if the table in question in fact consists of all dis-tinct values, the simple blowup sampling estimator weare using estimates the size perfectly! Now back to thecube, most of what we are estimating is for combina-tions of two or three attributes. Even if each attributeitself contains a large number of duplicates, these higherdimensional combinations contain very few duplicates.For these, the algorithm is close to correct, hence theoverall estimate is not bad. To verify this, we car-ried out another set of experiments on a database withtwo dimensions, D0 and D1. Each dimension had 100unique values, and the database consisted of 50,000 tu-ples. There was no hierarchy on either dimension. Letus call this schema 3. The number of distinct values wassmall, resulting in a lot of duplicates in the database.Now, the sampling based approach over-estimates thesize of the cube by orders of magnitude (see Figures 7and 8). Hence, we can conclude that the samplingbased approach was performing well on the data setsassociated with schemas 1 and 2 because the numberof duplicates was too small.The algorithm based on probabilistic counting esti-mates the size of the cube to within a theoretically pre-dicted bound. The values of the parameters we usedare shown in Table 2. The estimate is accurate underwidely varying data distributions, ranging from uniform

to highly skewed. It scans the database only once. Itmaintains storage proportional to the number of groupbys that will be performed in order to compute thecube. The number of group bys is given by Equation 1.Therefore, using memory proportional to Qki=1(hi+1),and a single scan of the database we can accuratelyestimate the size of precomputed aggregates.4 Extensions to the PCSA-based algo-rithmIn this section we look at how to estimate the size of asub-cube. Estimation of the cube size after the additionor deletion of data is also discussed.4.1 Estimating sub-cube sizesThe PCSA based algorithm in section 2.3.2 considersall combinations of hierarchies in order to generate anestimate of the cube. If the size of a sub-cube is desired,we can generate those combinations of hierarchies whichmake up the desired sub-cube. For example, in thecube computation presented in Table 1, if we computethe sub-cube which includes \Products" as one of thegroup by attributes, the following set S of group byswill be computed:S = f(Products); (Products, Stores)gand lines (2) and (6) of the algorithm now read:(2) for each C 2 S do(6) for each C 2 S doSince we estimate the size of each group by in orderto estimate the cube size, we can trivially estimate thesize of a single group by.4.2 Incremental estimationData warehouses typically batch updates to thedatabase. For example, loading weekly sales data intothe warehouse can be done once a week. The additionof new data may changes the sizes of some of the groupbys, and hence change the size of the new cube. Thischange in group by sizes can be estimated by updat-ing the bitmaps used by the previous estimation. Theestimate of the size of a group by is made from the cor-responding bitmap array. So, the changes in the size ofa group by can be captured by storing the bitmap arraycorresponding to a group by and updating it using thenew data. To estimate the cube size, the bitmaps cor-responding to every combination of group bys have tobe stored. All additions of data to the database mustalso update these bitmaps.The changes to the algorithm in section 2.3.2 areminimal. Step (0) becomes:



www.manaraa.com

0

20000

40000

60000

80000

100000

120000

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 tu

pl
es

 in
 th

e 
C

ub
e

Zipf (0 => uniform, 1 => skewed)

Actual size vs Estimated size

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

10
0 

* 
| E

st
im

at
e 

- 
A

ct
ua

l |
 / 

A
ct

ua
l s

iz
e

Zipf (0 => uniform, 1 => skewed)

Absolute Relative Error

Actual Size
Probabilistic Estimate

Analytic Estimate
Sampling [100 samples]
Sampling [500 samples]

Sampling [1000 samples]

Figure 7: Estimates vs. the actual size of the cubefor Schema 3. Figure 8: The error in the estimates from the actualsize of the cube for Schema 3.
1 1 1 0 0 0

7

0

3 1 0 1 0 0

1

5 0

Bitmap

Count array

0 1 2 3 4 5 6

Figure 9: A bitmap array and its corresponding countarray. Bits 0, 1, 2 and 4 of the bitmap are 1s. Fromthe count array, the number of \hits" to these bits are5, 3, 1 and 1 respectively.(0) Load the bitmaps from disk.If jCj is the number of group bys in the cube, L is thelength of each bitmap and m is the number of bitmapsper group by, the storage needed for the bitmaps is:jCj � L �m.4.3 Estimation after data removalBusiness may want to keep data that is fairly recent inits database (older data can be moved from to tertiarystorage). For example, a business will want to keepsales data from the last 65 weeks (5 quarters) in itsdatabase. Usually blocks of data are discarded at thesame time.It is not su�cient to maintain bitmaps to estimatecube sizes with removal of data. For each bitmap, wehave to store the number of \hits" for each bit (seeFigure 9). Corresponding to a bitmap, we have an arrayof integers, the nth element of which is the number oftimes tuples tried to set the nth bit of the bitmap to 1.The algorithm is:(0) Load the counter arrays from disk.(1) for each tuple T being deleted do

(2) for each combination C of hierarchies do(3) T 0 := PC(T ).(4) Decrement(C, �(T 0), bit(T 0))The function Decrement takes three arguments as in-put, the combination of hierarchies, the number of thecounter array, and the index into the counter array re-spectively, and decrements the speci�ed element of thecounter array. � is de�ned in equation 3. The estimatecan be formed using the count-arrays.If jCj is the number of group bys in the cube, L isthe length of each count-array (equal to the length ofa bitmap), m is the number of count-arrays per groupby (equal to the number of bitmaps per group by), andthe size of an integer is I , the storage needed for thecount-arrays is: jCj � L �m � I .5 ConclusionsPrecomputing aggregates on some subsets of dimen-sions and their corresponding hierarchies can substan-tially reduce the response time to a query. However,precomputation in the presence of hierarchies results ina large increase in the amount of storage required tostore the database. In this paper, we presented threestrategies to estimate this blowup.Comparing the algorithms based on their accuracy,we �nd that the algorithm based on sampling over-estimates the size of the cube, and the estimate isstrongly dependent on the number of duplicates presentin the database. The algorithm based on assuming thedata is uniformly distributed works very well if thedata is uniformly distributed, but as the skew in thedata increases, the estimate (which is independent ofthe skew) becomes inaccurate. In the experiments wecarried out, the analytical estimate was more accuratethan the sampling based estimate for widely varying



www.manaraa.com

skew in the data. The algorithm based on probabilis-tic counting performs very well under various degreesof skew, always giving an estimate with a bounded er-ror. Hence it provides a more reliable, accurate andpredictable estimate than the other algorithms.Analyzing the amount of work performed by the dif-ferent algorithms we can see that the analytical ap-proximation does not look at the data, and hence theamount of work done is dependent only on the schema,and not on the data. The algorithm based on sam-pling needs to see only a small subset of the database.Sampling may be relatively expensive depending on thepage access pattern of the sampling strategy. Each tu-ple may need a page access, making the algorithm ex-pensive. The algorithm based on probabilistic countingscans the entire database once and performs work pro-portional to the number of group bys for each tuple.Which algorithm is best depends upon the desiredaccuracy, the amount of time available for the estima-tion, and the degree of skew in the underlying data.But in most cases, the algorithm of choice for a reason-ably quick and accurate estimate of the size of the cubeis the algorithm based on probabilistic counting.References[AAD+96] S. Agarwal, R. Agrawal, P.M. Deshpande,A. Gupta, J.F. Naughton, R. Ramakrish-nan, S. Sarawagi. On the Computation ofMultidimensional Aggregates. Proc. of the22nd Int. VLDB Conf., 1996.[AGS95] R. Agrawal, A. Gupta, S. Sarawagi. Mod-eling Multidimensional Databases. IBM Re-search Report, IBM Almaden Research Cen-ter, San Jose, California, 1995.[CCS93] E.F. Codd, S.B. Codd, C.T. Salley. Provid-ing OLAP (On-Line Analytical Processing)to User-Analysts: An IT Mandate, E.F.Codd and Associates, 1993. Available fromhttp://www.arborsoft.com/papers/intro.html.[Fel57] W. Feller. An Introduction to ProbabilityTheory and Its Applications, Vol. I, JohnWiley and Sons, pp 241, 1957.[FM85] P. Flajolet, G.N. Martin. ProbabilisticCounting Algorithms for Database Appli-cations, Journal of Computer and SystemSciences, 31(2): 182-209, 1985.[GBLP96] J. Gray, A. Bosworth, A. Layman, H. Pira-hesh. Data Cube: A Relational AggregationOperator Generalizing Group-By, Cross-Tab, and Sub-Totals, Proc. of the 12th Int.Conf. on Data Engg., pp 152-159, 1996.

[HNSS93] P.J. Haas, J.F. Naughton, S. Seshadri, A.N.Swami. Selectivity and Cost Estimation forJoins Based on Random Sampling. IBM Re-search Report RJ9577, IBM Almaden Re-search Center, San Jose, California, 1993.[HNSS95] P.J. Haas, J.F. Naughton, S. Seshadri, L.Stokes. Sampling-Based Estimation of theNumber of Distinct Values of an Attribute,Proc. of the 21st Int. VLDB Conf., 311{322,1995.[HRU96] V. Harinarayanan, A. Rajaraman, J.D. Ull-man. Implementing Data Cubes E�ciently,Proc. ACM SIGMOD Int. Conf. on Man-agement of Data, 205{227, 1996.[KT95] Kenan Technologies. An Introduction toMultidimensional Database Technology,Available from http://www.kenan.com/[Str95] MicroStrategy Inc. The Case for Rela-tional OLAP, A white paper available fromhttp://www.strategy.com/[Zipf49] G.K. Zipf. Human Behavior and the Princi-ple of Least E�ort, Addison-Wesley, Read-ing, MA, 1949.


